
Class	Scheduler	
Design	Document	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	

Team 1
ECpE Student Services

Brian Schomer (Meeting lead/minutes taker), Carter Everts
(Testing lead), Isaiah John Ortiola(Ind. Component

Designer), Lewis Callaway (Client Interaction), Michael Less
(Tech Lead), Simeon Steward (Team organization)

Sdmay24-01@iastate.edu
https://sdmay24-01.sd.ece.iastate.edu

mailto:Sdmay24-01@iastate.edu
https://sdmay24-01.sd.ece.iastate.edu/

	

Development	Standards	&	Practices	Used	
Each Ticket will have a branch associated with it, named as such:
#ticketid#_branch_title

Each branch shall be reviewed by one or more other people before being merged
into main. The merge must be completed by someone other than the developer
who worked on the branch.

Summary	of	Requirements	

• Create a Desktop app that can find valid class times for new classes.
• App will minimize conflicts for students that the course is designed for.
• App will recommend timeslots so that user can choose what works best.
• App has a user interface that is simple to use.
• App must be able to input and store courses that are already scheduled.

Applicable	Courses	from	Iowa	State	University	Curriculum		
• Computer Science: 228, 311, 309, 319, 363
• Software Engineering: 317
• Computer Engineering: 230

New	Skills/Knowledge	acquired	that	was	not	taught	in	courses	
Scheduling Algorithms, Front-end Development

Executive	Summary	

	

Table	of	Contents	

Contents	
Contents	..	2	
1	 Team	..	7	

1.1	 TEAM	MEMBERS	..	7	
1.2	 REQUIRED	SKILL	SETS	FOR	YOUR	PROJECT	..	7	
Front-End	Programming	(specifically	desktop	applications),	Backend	Programming	(including	
algorithms	for	scheduling/conflict	graphs),	communication	with	client,	time	management.	7	
1.3	 SKILL	SETS	COVERED	BY	THE	TEAM	..	7	
All	team	members	have	gone	through	the	same	set	of	core	classes	and	have	an	ability	to	
troubleshoot	and	do	full-stack	development.	This	means	there	will	be	overlap	with	the	skills.	7	
Frontend:	Michael	Less	..	7	
Backend:	Simeon	Steward,	Brian	Schomer	...	7	
Testing:	Carter	Everts	...	7	
Component	Designer:	Isaiah	Ortiola	..	7	
Client	Communication:	Lewis	Callaway	...	7	
Time	Management:	Simeon,	Lewis,	and	Brian	...	7	
1.4	 PROJECT	MANAGEMENT	STYLE	ADOPTED	BY	THE	TEAM	...	7	
We	will	follow	the	agile	system	with	roles	assigned	to	the	teammates	as	detailed	below.	7	
1.5	 INITIAL	PROJECT	MANAGEMENT	ROLES	...	7	
1.5.1	 TEAM	LEAD	...	7	
1.5.2	 MEETING	LEAD	...	7	
1.5.3	 CLIENT	COMMUNICATIONS	..	8	

2	 Requirements	..	8	
2.1	 PROBLEM	STATEMENT	...	8	
2.1.1	 FUNCTIONAL	REQUIREMENTS	...	8	
2.1.1.1	 Input	each	major's	core	classes	per	semester	(a	CPRE	Freshman	takes	Math	165,	Chem	
167,	CPRE	185,	etc).			Provide	fields	for	course	title,	time	requirement	(50	minutes,	90	minutes,	
etc),	and	available	spots	...	8	
2.1.1.2	 Add	the	remaining	ECpE	courses	that	are	not	required.	...	8	

	

2.1.1.3	 Create	a	scheduling	algorithm	that	takes	into	account	various	constraints	and	
preferences.		Algorithm	should	be	used	to	find	a	free	period	for	a	new	course			Avoid	scheduling	
two	courses	with	overlapping	content	at	the	same	time	...	8	
Ensure	that	specific	courses	(as	defined	in	the	rules)	are	not	scheduled	back	to	back	8	
2.1.1.4	 Input	the	available	times	for	the	courses	in	the	system.	If	possible,	pull	data	from	the	
classes.iastate.edu	server.	..	8	
2.1.1.5	 Create	a	new	course	that	needs	to	be	scheduled.	...	8	
2.1.1.6	 When	creating	the	new	course,	add	"rules"	that	the	class	needs	to	find	free	periods	
around.		Ex:	don't	conflict	with	other	6,7,8	semester	CPRE	core	classes	Ex:	don't	schedule	the	
same	time	as	another	determined	class	..	8	
2.1.1.7	 Allow	for	course	time	import	from	classes.iastate.edu	(if	possible)	8	
2.1.1.8	 Handle	cross-listed	courses	correctly	(it	is	the	same	course	so	don’t	treat	it	as	two	
separate	courses)	..	8	
2.1.1.9	 User	shall	be	able	to	view	current	schedule	..	8	
2.1.1.10	 User	shall	be	able	to	view	class	details	..	8	
2.1.2	 RESOURCE	REQUIREMENTS	...	9	
2.1.2.1	 Modern	Development	Environment	(IntelliJ	IDE,	Gitlab)	...	9	
2.1.2.2	 Library	to	develop	a	desktop	application	smoothly.	...	9	
2.1.2.3	 Program	should	be	easy	to	install	since	it	is	going	to	be	non-engineers	installing	the	
program	(resource	constraint)	..	9	
2.1.3	 UI	REQUIREMENTS	AND	QUALITATIVE	AESTHETIC	REQUIREMENTS	..	9	
2.1.3.1	 Desktop	application	..	9	
2.1.3.2	 Easily	read	grid	of	already	scheduled	classes.	...	9	
2.1.3.3	 Menus	to	create	classes	and	look	for	available	times.	..	9	
2.1.3.4	 Ensure	that	schedules	are	formatted	in	a	user-friendly	and	legible	manner	9	
2.3	 INTENDED	USERS	AND	USES	..	9	

3	 Project	Plan	...	9	
3.1	 TASK	DECOMPOSITION	...	9	
3.2	 PROJECT	MANAGEMENT/TRACKING	PROCEDURES	...	11	
3.3	 PROJECT	PROPOSED	MILESTONES,	METRICS,	AND	EVALUATION	CRITERIA	12	
3.4	 PROJECT	TIMELINE/SCHEDULE	...	13	

	

	..	13	

	..	13	
3.5	 Risks	And	Risk	Management/Mitigation	..	13	
3.6	 PERSONNEL	EFFORT	REQUIREMENTS	..	17	
3.7	 OTHER	RESOURCE	REQUIREMENTS	..	17	

4	 Design	...	17	
4.1	 Design	Content	..	17	
4.2	 Design	Complexity	..	18	
4.3	 Modern	Engineering	Tools	...	18	
4.4	 Design	Context	..	19	

	

4.5	 Prior	Work/Solutions	...	20	
4.6	 Design	Decisions	..	20	
4.6	 Proposed	Design	..	21	
4.7	 Design	Visual	and	Description	..	24	
4.8	 Technology	Considerations	...	24	
4.9	 Design	Analysis	..	24	
4.10	 Appendix	A	–	Time	Slots	..	25	
4.11	 Appendix	B	–	Input	Format	...	25	
4.12	 Appendix	C	–	Output	Format	...	26	
4.13	 Appendix	D	–	Database	Design	Diagram	...	27	

5	 Testing	...	28	
5.1			Unit	Testing	...	28	
5.2		Interface	Testing	..	28	
5.3		Integration	Testing	..	28	
5.4		System	Testing	...	28	
5.5		Regression	Testing	...	29	
5.6	Acceptance	Testing	..	29	
5.7	Security	Testing	..	29	
5.8	 Results	...	29	

6	 Implementation	..	29	
7	 Professionalism	...	29	

7.1	 Areas	of	Responsibility	...	30	
7.2	 Project	Specific	Professional	Responsibility	Areas	..	30	
7.3	 Most	Applicable	Professional	Responsibility	Area	..	30	
	

	

	

	

List	of	figures/tables/symbols/definitions	(This	should	be	the	similar	to	the	
project	plan)	

1. Figure	1:	Task	Decomposition	Diagram	
2. Figure	2:	Gantt	Chart	

	

3. Figure	3:	Effort	Chart	
4. Figure	4:	Prototype	Design	
5. Figure	5:	Add	new	class	popup	
6. Figure	6:	How	many	students	can	take	each	course	
7. Figure	7:	Conflict	screen	

	

1 Team	

1.1 TEAM	MEMBERS	

Simeon	Steward	

Brian	Schomer	

Lewis	Callaway	

Isaiah	Ortiola	

Carter	Everts	

Michael	Less	

1.2 REQUIRED	SKILL	SETS	FOR	YOUR	PROJECT	

Front-End	Programming	(specifically	desktop	applications),	Backend	Programming	(including	
algorithms	for	scheduling/conflict	graphs),	communication	with	client,	time	management.	

1.3 SKILL	SETS	COVERED	BY	THE	TEAM	

All	team	members	have	gone	through	the	same	set	of	core	classes	and	have	an	ability	to	
troubleshoot	and	do	full-stack	development.	This	means	there	will	be	overlap	with	the	skills.		

Frontend:	Michael	Less		

Backend:	Simeon	Steward,	Brian	Schomer	

Testing:	Carter	Everts		

Component	Designer:	Isaiah	Ortiola	

Client	Communication:	Lewis	Callaway	

Time	Management:	Simeon,	Lewis,	and	Brian	

1.4 PROJECT	MANAGEMENT	STYLE	ADOPTED	BY	THE	TEAM	

We	will	follow	the	agile	system	with	roles	assigned	to	the	teammates	as	detailed	below.		

1.5 INITIAL	PROJECT	MANAGEMENT	ROLES	

1.5.1 TEAM	LEAD	

Simeon	Steward	

1.5.2 MEETING	LEAD	

	

Brian	Schomer	

1.5.3 CLIENT	COMMUNICATIONS	

Lewis	Callaway	

2 Requirements	

2.1 PROBLEM	STATEMENT		

When	new	courses	need	to	be	added,	the	ECpE	department	needs	to	schedule	classes	in	a	manner	where	
courses	are	scheduled	at	a	time	that	does	not	conflict	for	most	students.	The	schedule	is	currently	
scheduled	manually	by	utilizing	a	master	spreadsheet	and	testing	potential	times	by	hand.	Additionally,	
the	reliance	on	a	master	spreadsheet	makes	it	difficult	to	quickly	adapt	without	more	manual	attempts	
at	finding	a	free	time.	A	user-friendly	desktop	application	that	can	streamline	the	course	scheduling	
process	for	the	ECpE	department	will	reduce	scheduling	conflicts	for	students	by	intelligently	assigning	
class	times	based	on	predefined	rules	and	constraints.	There	is	currently	no	automated	system	in	place	
to	optimize	the	scheduling	classes	so	our	solution	will	be	new.		

REQUIREMENTS	&	CONSTRAINTS	

2.1.1 FUNCTIONAL	REQUIREMENTS	
2.1.1.1 Input	each	major's	core	classes	per	semester	(a	CPRE	Freshman	takes	Math	165,	Chem	167,	

CPRE	185,	etc).			 Provide	fields	for	course	title,	time	requirement	(50	minutes,	90	minutes,	etc),	
and	available	spots	

2.1.1.2 Add	the	remaining	ECpE	courses	that	are	not	required.	
2.1.1.3 Create	a	scheduling	algorithm	that	takes	into	account	various	constraints	and	preferences.	

	 Algorithm	should	be	used	to	find	a	free	period	for	a	new	course		
	 Avoid	scheduling	two	courses	with	overlapping	content	at	the	same	time		

Ensure	that	specific	courses	(as	defined	in	the	rules)	are	not	scheduled	back	to	back	
2.1.1.4 Input	the	available	times	for	the	courses	in	the	system.	If	possible,	pull	data	from	the	

classes.iastate.edu	server.		
2.1.1.5 Create	a	new	course	that	needs	to	be	scheduled.	
2.1.1.6 When	creating	the	new	course,	add	"rules"	that	the	class	needs	to	find	free	periods	around.		

Ex:	don't	conflict	with	other	6,7,8	semester	CPRE	core	classes	
Ex:	don't	schedule	the	same	time	as	another	determined	class		

2.1.1.7 Allow	for	course	time	import	from	classes.iastate.edu	(if	possible)	
2.1.1.8 Handle	cross-listed	courses	correctly	(it	is	the	same	course	so	don’t	treat	it	as	two	separate	

courses)	
2.1.1.9 User	shall	be	able	to	view	current	schedule	
2.1.1.10 User	shall	be	able	to	view	class	details	

	

	

2.1.2 RESOURCE	REQUIREMENTS		
2.1.2.1 Modern	Development	Environment	(IntelliJ	IDE,	Gitlab)	
2.1.2.2 Library	to	develop	a	desktop	application	smoothly.	
2.1.2.3 Program	should	be	easy	to	install	since	it	is	going	to	be	non-engineers	installing	the	program	

(resource	constraint)	
2.1.3 UI	REQUIREMENTS	AND	QUALITATIVE	AESTHETIC	REQUIREMENTS	
2.1.3.1 Desktop	application	
2.1.3.2 Easily	read	grid	of	already	scheduled	classes.	
2.1.3.3 Menus	to	create	classes	and	look	for	available	times.	
2.1.3.4 Ensure	that	schedules	are	formatted	in	a	user-friendly	and	legible	manner	

	

2.2 ENGINEERING	STANDARDS	

There	are	not	many	engineering	standards	apply	to	our	project	since	it	is	a	purely	software	project	and	it	
does	not	have	to	abide	by	any	data	protection	standards	since	it	does	not	deal	with	any	type	of	protected	
information.		

We	plan	to	use	Java	and	Spring	Boot	and	will	try	to	align	with	the	respective	programming	standards.	
For	Spring	Boot	we	will	separate	the	layers	when	possible	to	lead	to	smaller	class	files	that	are	more	
easily	maintained.	

We	are	also	going	to	attempt	to	make	bug	free	code,	but	since	bugs	are	in	all	code	we	will	have	to	fix	
them	as	they	pop	up.	We	will	make	use	of	the	sprint	board	to	plan	out	which	bugs	have	the	largest	
impact	and	work	to	fix	them	as	they	pop	up,	leading	to	a	much	more	stable	product.	

2.3 INTENDED	USERS	AND	USES		

The	ECpE	office	staff	(Vicky	and	Tina	in	particular)	are	the	primary	users	of	this	program.	They	will	use	
this	application	to	record	the	already	scheduled	courses	from	ECpE	and	enter	in	the	core	schedule	for	an	
ECpE	student.	There	would	be	one	for	EE,	one	for	CPRE,	and	one	for	CyberE.	Next,	a	new	course	would	
need	to	be	scheduled.	A	new	course	would	be	created	and	then	any	conflicts	that	need	to	be	avoided	
would	be	entered.	The	program	would	then	return	the	potential	times	for	the	new	course.		

3 Project	Plan	

3.1 TASK	DECOMPOSITION	

https://docs.google.com/drawings/d/1oRg6CpgnTUuXv8lNf3QCAjmepitAHT3fR_11pdMPUHM/e
dit?usp=sharing

https://docs.google.com/drawings/d/1oRg6CpgnTUuXv8lNf3QCAjmepitAHT3fR_11pdMPUHM/edit?usp=sharing
https://docs.google.com/drawings/d/1oRg6CpgnTUuXv8lNf3QCAjmepitAHT3fR_11pdMPUHM/edit?usp=sharing

	

Figure 1: Task Decomposition Diagram

3.1.1 Front	End	-	UI	

3.1.1.1 Table showing the current master schedule for a specific semester (Req 3.2)
3.1.1.2 Make the table showing current master schedule read from backend (Req 3.2)
3.1.1.3 Form to input course, course times, and courses or schedules it can’t conflict with (Req

1.6)
3.1.1.4 Form to input 4-year plan courses (Req 1.1)
3.1.1.5 Form to create a new course (Req 1.5)
3.1.1.6 Screen to view available course times that a new course could fit into (Req 3.4)

3.1.2 Front	End	-	Backend	Interface:		

3.1.2.1 GET current master Schedule (Req 1.9)

	

3.1.2.2 POST new course with known class time (including class times, courses it can’t conflict
with) (Req 1.1, 1.2, 1.8)

3.1.2.3 PUT modify Course (including class times, courses it can’t conflict with) (Req 1.1, 1.2,
1.8)

3.1.2.4 GET course details (including class times, courses it can’t conflict with) (Req 1.10)
3.1.2.5 DELETE Course and associated data (Req 1.1, 1.2, 1.8)
3.1.2.6 [Extension] POST Add new course with unknown class time to current schedule (Req

1.5)
3.1.2.7 [Extension] GET possible schedules generated based on requirements (Req 1.3)
3.1.2.8 [Extension] POST Set current possible schedule to current master schedule (Req 1.3)

3.1.3 Backend	-	Business	Logic		

3.1.3.1 Get current master Schedule (Req 1.9)
3.1.3.2 Add new course (including class times, courses it can’t conflict with) (Req 1.1, 1.2, 1.8)
3.1.3.3 Modify Course (including class times, courses it can’t conflict with) (Req 1.1, 1.2, 1.8)
3.1.3.4 Get course details (including class times, courses it can’t conflict with) (Req 1.10)
3.1.3.5 Delete Course and associated data (Req 1.1, 1.2, 1.8)
3.1.3.6 [Extension] Add new course with unknown class time to current schedule (Req 1.5)
3.1.3.7 [Extension] Generate possible schedules generated based on existing schedule (Req 1.3)
3.1.3.8 [Extension] Post Set current possible schedule to current master schedule (Req 1.3

3.1.4 Data	Access	Layer	/	ORM	&	Database		

3.1.4.1 Create a database table of courses
Course Name
Degree Requirements i.e. SE semester 3
Time & Duration
Professor?

3.1.4.2 Develop a solution to pull from classes.iastate.edu (Req 1.7)
3.1.4.3 Deployment:
3.1.4.4 Create an executable that can be run on the client’s computer (Req 3.1)
3.2 PROJECT	MANAGEMENT/TRACKING	PROCEDURES	

We are using waterfall+agile for this project. The reason it is waterfall+agile is that we do have a
base level of code that needs to be written before it can even be confirmed with the client. We
have clearly defined requirements upfront so this will give us a solid basis to build the software
upon. We will check in with the client more frequently as soon as we have more visible changes
and when it comes time to confirm changes were successful. Additionally, the general rule of
thumb is that below a 200 person-day effort project, agile overhead is too much. So, we’ll have a
waterfall task decomposition and schedule but finish each task in an agile manner.

What will your group use to track progress throughout the course of this and the next semester.
This could include Git, Github, Trello, Slack or any other tools helpful in project management.

Our team will use GitLab to formally track progress as well as use Discord for more informal
updates.

	

3.3 PROJECT	PROPOSED	MILESTONES,	METRICS,	AND	EVALUATION	CRITERIA	

The milestones will be split into front and backend to try and keep as little dependency as
possible

Front end (these do not have metrics as they are more visual tasks):

Display the current master schedule

Load the table to display from a database

Import new courses

Create 4 Year Plans

Screens to view available course times

Rudimentary Desktop interface

Make sure Input is taken

Ensure some sort of Output

Backend:

Create database table of courses – Needs to be a file that can loaded and transferred from one
person to the next

Get current master schedule from database – After selecting the file, we do not want the set
up/loading to take more than 10 seconds

Add new course to database – App should respond in .5 seconds

Modify course database – App should respond in .5 seconds

Get Course details – App should pull up new information in 1 second

Pull courses from classes.iastate.edu – Make minimal API calls, process returned information in
5 seconds

Add new course with unknown class time – We want the algorithm to find new spots within 10
seconds *NOTE: Start Development on the Algorithm early to ensure time to deal with any
difficulties later on*

	

3.4 PROJECT	TIMELINE/SCHEDULE	
	

	

	
Figure 2: Gantt Chart

	

3.5 RISKS	AND	RISK	MANAGEMENT/MITIGATION	

Consider for each task what risks exist (certain performance target may not be met; certain tool
may not work as expected) and assign an educated guess of probability for that risk. For any risk
factor with a probability exceeding 0.5, develop a risk mitigation plan. Can you eliminate that
task and add another task or set of tasks that might cost more? Can you buy something off-the-
shelf from the market to achieve that functionality? Can you try an alternative tool, technology,
algorithm, or board?

	

Agile projects can associate risks and risk mitigation with each sprint.

Front End - UI	
1. Table showing the current master schedule for a specific semester (Req 3.2)

Risk: Data representation is unclear or formatted incorrectly.
Probability: 0.4

2. Make the table showing current master schedule read from backend (Req 3.2)

Risk: Backend connectivity issues or data mismatch.
Probability: 0.5
Mitigation Plan: Test connectivity rigorously. Consider adding a system for manual

	 creation

3. Form to input course, course times, and courses or schedules it can’t conflict with (Req
1.6)
Risk: Users input incorrect data leading to scheduling conflicts.
Probability: 0.6
Mitigation Plan: Add input validation and error messages to guide users. Consider

	 adding a review stage before data submission.

4. Form to input 4-year plan courses (Req 1.1)
Risk: Mismatch between expected course sequences and actual university offerings.
Probability: 0.4

5. Form to create a new course (Req 1.5)

Risk: Duplication of courses due to different course codes but similar content.
Probability: 0.5
Mitigation Plan: Implement a course search functionality to check for existing courses

	 before creation.

6. Screen to view available course times that a new course could fit into (Req 3.4)
Risk: The algorithm doesn't find the optimal time slot, leading to inefficiencies.
Probability: 0.4

Front End - Backend Interface	
1. GET current master Schedule (Req 1.9)

Risk: Incomplete or corrupted data transfer.
Probability: 0.4

2. POST new course with known class time (including class times, courses it can’t conflict

with) (Req 1.1, 1.2, 1.8)

	

Risk: Data mismatch or incorrect storage due to invalid input or server error.
Probability: 0.4

3. PUT modify Course (including class times, courses it can’t conflict with) (Req 1.1, 1.2,

1.8)
Risk: Overwriting existing data unintentionally.
Probability: 0.5
Mitigation Plan: Always create a backup of existing data before modification. Version

	 control for course details.

4. GET course details (including class times, courses it can’t conflict with) (Req 1.10)
Risk: Data might not reflect the most recent updates or could be incomplete.
Probability: 0.4

5. DELETE Course and associated data (Req 1.1, 1.2, 1.8)

Risk: Accidental deletion or corruption of associated data.
Probability: 0.6
Mitigation Plan: Add a validation screen before deletion and hold backups for undo's.

6. [Extension] POST Add new course with unknown class time to current schedule (Req

1.5)
Risk: Conflicting data entries when course time becomes known.
Probability: 0.5
Mitigation Plan: Continually check to see if the now known times conflict.

7. [Extension] GET possible schedules generated based on requirements (Req 1.3)

Risk: The generated schedules might not be optimal or could miss out on potential
	 configurations.

Probability: 0.5
Mitigation Plan: Perform routine tests and gather user feedback to refine scheduling

	 algorithms over time.

	

8. [Extension] POST Set current possible schedule to current master schedule (Req 1.3)
Risk: Overwriting existing master schedule without proper validation.
Probability: 0.6
Mitigation Plan: Provide a preview before overwriting and maintain version history of

	 schedules to roll back if needed.

Data Access Layer & Database	
1. Create a database table of courses

Risk: Data structure constraints might lead to issues with scalability or extensibility.

	

Probability: 0.4

2. Develop a solution to pull from classes.iastate.edu (Req 1.7)
Risk: External website structure or data format changes, leading to pulling failures.
Probability: 0.4

3. Create an executable that can be run on the client’s computer (Req 3.1)

Risk: Compatibility or performance issues on varying client systems.
Probability: 0.3

	
	
	
	

	

	
	
	
	
	
	
	
	

	

3.6 PERSONNEL	EFFORT	REQUIREMENTS			

Figure 3: Effort Chart

The table above shows the estimated hours for each task (as seen in the Gantt Chart) and the
rightmost portion of the table will help our group members log the time they’ve put into each
task.

3.7 OTHER	RESOURCE	REQUIREMENTS					

Since our project is entirely a software project, there should be no need for any types of
additional hardware or parts needed for our project. We shouldn’t need any other physical
materials to create our project, however one thing that we might require is some kind of server
to allow for the application to be accessed at any time. This is only if we are unable to create a
desktop application which is unlikely. Besides a possible server, there should be no other
requirements needed for our project.

4 Design	

4.1 DESIGN	CONTENT	

This	section	covers	the	design	for	the	Class	Scheduler’s	user	interface	and	backend.	The	design	will	
give	an	overview	of	the	different	parts	of	the	overall	software	executable	and	describes	the	

	

components	that	will	comprise	the	program.	It	also	describes	the	broader	context	and	design	
decisions	that	were	made.		

	

4.2 DESIGN	COMPLEXITY	

Provide	evidence	that	your	project	is	of	sufficient	technical	complexity.	Use	the	following	metric	or	
argue	for	one	of	your	own.	Justify	your	statements	(e.g.,	list	the	components/subsystems	and	
describe	the	applicable	scientific,	mathematical,	or	engineering	principles)	

1.	The	design	consists	of	multiple	components/subsystems	that	each	utilize	distinct	scientific,	
mathematical,	or	engineering	principles			

A.	User	Interface	(UI):	The	development	of	a	user-friendly	desktop	application	requires	
expertise	in	user	experience	(UX)	design,	including	layout	design,	accessibility,	and	
information	presentation	principles.	
B.	Data	Management:	Managing	class	schedules,	course	rules,	and	student	data	
necessitates	robust	data	handling	principles,	including	database	design	and	optimization.	
C.	Scheduling	Algorithm:	The	core	of	the	application	is	the	scheduling	algorithm,	which	
must	incorporate	mathematical	and	computational	principles	to	find	optimal	class	times,	
considering	various	constraints	and	preferences.	This	may	include	graph	theory,	constraint	
satisfaction,	and	optimization	techniques.	
D.	Integration	with	External	Data	Sources:	If	we	can	pull	data	from	external	servers	like	
classes.iastate.edu,	integrating	and	synchronizing	this	data	requires	knowledge	of	web	APIs	
and	data	parsing.		
E.	Software	Framework:	Using	Electron.js	as	the	framework	adds	another	layer	of	
complexity.	Understanding	the	framework's	architecture,	APIs,	and	best	practices	is	crucial	
for	a	successful	implementation.	

2.	The	problem	scope	contains	multiple	challenging	requirements	that	match	or	exceed	current	
solutions	or	industry	standards.	

A.	Current	Process:	We	aim	to	replace	a	manual	class	scheduling	process	with	an	
automated	system.	This	will	help	with	making	the	process	faster	and	easier	for	new	office	
staff.		
B.	End	User:	Intending	to	make	the	application	easy	to	install	for	non-technical	users	adds	
another	layer	of	complexity.		
C.	Scheduling	Algorithm:	The	need	to	create	a	new	course	with	customizable	rules	for	
scheduling,	including	avoiding	conflicts	and	adhering	to	specific	semester	schedules,	
requires	additional	considerations	that	a	generic	scheduling	algorithm	may	not	consider.	

4.3 MODERN	ENGINEERING	TOOLS	

WebStorm	IDE:	WebStorm	IDE	is	a	powerful	integrated	development	environment	that	will	be	
used	for	coding	and	development.	Its	role	included	code	editing	and	debugging.	

	

Gitlab:	Gitlab	will	be	used	for	version	control	and	continuous	integration.	It	will	play	a	pivotal	role	
in	managing	the	project's	source	code.	We	will	collaborate,	track	changes,	and	merge	code	
seamlessly	using	Gitlab.		

.js:	Electron.js	has	been	chosen	as	the	framework	for	building	the	desktop	application.	Its	role	was	
to	enable	the	development	of	desktop	applications	using	web	technologies	(HTML,	CSS,	and	
JavaScript).	It	also	has	the	functionality	to	work	independently	of	any	servers	which	is	a	
requirement	for	our	desktop-based	program.		

DBMS:	SQLite	will	be	used	as	a	database	platform	to	store	class	information,	preferences,	and	rules.	
It	will	interface	with	Electron.js	using	an	API.		

4.4 DESIGN	CONTEXT	

Describe	the	broader	context	in	which	your	design	problem	is	situated.	What	communities	are	you	
designing	for?	What	communities	are	affected	by	your	design?	What	societal	needs	does	your	
project	address?	

Our	problem	is	solving	a	very	specific	need	for	the	ECpE	office,	however	if	successful,	it	could	easily	
be	extended	to	other	departments	across	Iowa	State.	Our	project	is	addressing	a	need	to	assist	in	
making	the	scheduling	of	classes	easier	for	ECpE	office	staff.		

List	relevant	considerations	related	to	your	project	in	each	of	the	following	areas:	

Area	 Description	 Examples	
Public	health,	
safety,	and	
welfare	

While	our	project	doesn’t	necessarily	
affect	public	health	or	safety,	it	does		
work	to	make	an	existing	process	less	
stressful	for	ECpE	staff.			

The	ECpE	office	staff	is	able	to	
schedule	new	courses	quicker	
and	easier	than	before	
Professors	can	know	a	
potential	time	for	a	new	course	
quicker	since	the	office	staff	
can	find	an	available	time	
quicker	than	before		

Global,	
cultural,	and	
social	

The	software	does	not	offer	many	
opportunities	to	reflect	the	values,	
practices,	and	aims	of	the	cultural	
groups	it	affects,	but	will	attempt	to	
be	aligned	to	the	practices	and	aims	of	
the	ECpE	department	whenever	
possible.			

Not	super	applicable	to	our	
project,	but	we	will	ensure	that	
the	software	aligns	with	the	
current	standards	and	
processes	for	scheduling	
classes	so	as	many	students	
have	access	to	courses	as	
possible.		
	

Environmental		 The	project	is	purely	project,	so	there	
is	negligible	environmental	impact	
however	it	may	provide	a	small	
positive	impact.		

Since	this	is	a	purely	software	
project,	it	will	have	negligible	
impact.	It	may	save	a	small	
amount	of	paper	if	the	
department	printed	the	
existing	schedule	out	to	find	
available	times	manually.		

	

Economic	 Our	project	will	provide	an	economic	
benefit	because	it	will	help	streamline	
office	processes	and	save	time	for	the	
ECpE	office	staff.			

This	project	will	likely	save	the	
ECpE	office	staff	time	in	
scheduling	classes	that	they	
can	rededicate	toward	
assisting	students	which	in	
turn	could	help	Iowa	State	
retain	more	students.		The	
project	has	no	recurring	costs	
since	it	is	locally	run.		

	

4.5 PRIOR	WORK/SOLUTIONS	

Iowa	State	has	a	“schedule	planner”	tool	at	classes.iastate.edu	and	AccessPlus	has	similar	
functionality.	However,	these	tools	are	aimed	at	a	student	being	able	to	create	a	schedule	that	fits	
within	their	requirements.	These	tools	wouldn’t	work	for	our	application.	One	reason	is	the	
workflow	for	planning	a	course.	The	aforementioned	tools	both	help	students	schedule	classes	once	
they	are	entered	in	the	master	schedule.	Our	project	helps	the	ECpE	determine	where	new	courses	
should	be	scheduled	in	the	master	schedule.	Our	project	is	not	intended	to	generate	student	
schedules.		Additionally,	our	tool	must	consider	different	rules	than	the	aforementioned	schedulers	
since	we	are	not	attempting	to	create	a	schedule	for	a	student,	but	rather	schedule	a	course.	For	
example,	a	prerequisite	would	be	enforced	on	Access	Plus,	but	our	project	can	schedule	a	new	
course	at	the	same	time	as	a	prerequisite.		

4.6 DESIGN	DECISIONS	

No	backend	server:	We	want	to	make	the	project	as	maintainable	in	the	future	as	possible.	Not	
requiring	a	server	to	be	operational	for	the	code	to	run	would	assist	with	that.	The	client	requested	
a	desktop	application.	Additionally,	only	one	person	will	be	using	this	software	so	there	is	no	need	
for	concurrent	access.	The	project	may	pull	data	from	the	classes.iastate.edu	API,	but	it	will	also	be	
designed	in	a	manner	that	can	allow	for	manual	class	entry	if	the	API	changes	or	is	unavailable.	All	
the	data	that	needs	to	persist	in	the	project	can	be	saved	as	a	local	file	and	doesn’t	need	to	be	
synced	on	the	cloud.		

Choosing	Electron:	Our	group	has	selected	Electron.js	as	the	framework	to	build	a	desktop	
application.	We	selected	this	platform	for	multiple	reasons.	One	reason	is	that	it	is	cross-platform	
so	it	can	be	used	on	both	Mac	and	PC	which	is	a	convenient	feature	since	the	University	uses	both	
platforms.	It	also	allows	us	to	create	a	user	interface	in	a	web	framework	such	as	React,	that	most	of	
our	team	members	have	some	familiarity	with	unlike	a	Desktop	UI	framework	like	JavaFX.	For	a	
backend	of	NodeJS,	our	team	members	a	little	experience,	however	it	is	simpler	to	learn	and	
frequently	used	in	industry.	Electron	does	have	slightly	worse	performance	than	a	native	
application	since	it	runs	on	top	of	a	variant	of	Chromium,	however	our	program	will	not	use	many	
resources	so	this	should	not	be	a	problem.		

Nodejs	&	Typescript	Backend:	For	the	backend,	we	choose	to	go	with	NodeJS	and	Typescript	as	it	
is	commonly	and	successfully	used	with	electron,	and	we	are	confident	that	it	will	suit	our	needs	as	
a	backend	framework.	Typescript	is	a	familiar	language,	and	for	a	project	of	this	size	the	types	are	
appreciated	over	vanilla	JavaScript.	

	

SQLite	database:	Our	group	selected	SQLite	as	a	database	for	our	project.	We	picked	this	instead	
of	using	a	static	file	like	CSV	since	users	will	be	much	less	likely	to	attempt	to	open	the	file	and	
corrupt	it.	There	are	many	SQLite	libraries	(potentially	an	ORM)	that	would	allow	us	to	interface	
with	our	backend	code	which	will	allow	for	more	streamlined	development.	We	chose	SQLite	over	
a	more	extensive	database	like	MySQL	is	because	we	don’t	require	as	much	overhead	to	install	the	
database.	To	run	MySQL,	the	end	user	would	need	to	be	running	a	MySQL	server	which	would	
complicate	the	installation.	For	SQLite,	we	can	have	a	single	file	that	our	program	interacts	with.	
SQLite	doesn’t	allow	for	simultaneous	users	to	connect	to	the	database,	but	that	is	not	needed	for	
our	application.			

4.6 PROPOSED	DESIGN	

Discuss	what	you	have	done	so	far	–	what	have	you	tried/implemented/tested?		

	

4.7.	1	Design	0	(Initial	Design)	

Design	Visual	and	Description	

Include	a	visual	depiction	of	your	current	design.	Different	visual	types	may	be	relevant	to	different	
types	of	projects.	You	may	include:	a	block	diagram	of	individual	components	or	subsystems	and	
their	interconnections,	a	circuit	diagram,	a	sketch	of	physical	components	and	their	operation,	etc.	

Describe	your	current	design,	referencing	the	visual.	This	design	description	should	be	in	sufficient	
detail	that	another	team	of	engineers	can	look	through	it	and	implement	it.		

Justify	each	component	in	the	design	with	respect	to	requirements.	

	

	

Figure 4: Prototype Design

This	design	is	a	rough	idea	for	how	our	desktop	app	may	look.	Since	this	is	Design	0,	this	is	a	very	
rough	idea	of	what	it	will	look	like.	This	design	includes	a	clean	UI	that	is	easy	on	the	eyes	and	
includes	the	ISU	colors	since	it	will	be	used	by	the	ECpE	department	here	on	campus.	The	UI	
includes	a	clickable	weekly	schedule	and	possible	button	to	randomly	generate	a	schedule	for	the	
user.	

Functionality	

Describe	how	your	design	is	intended	to	operate	in	its	user	and/or	real-world	context.	This	
description	can	be	supplemented	by	a	visual,	such	as	a	timeline,	storyboard,	or	sketch.	How	well	
does	the	current	design	satisfy	functional	and	non-functional	requirements?	

This	design	is	intended	to	let	the	user	insert	the	desired	courses	into	the	weekly	schedule	where	
they	choose.	However,	there	is	also	a	button	that	the	user	can	use	to	generate	a	schedule	which	
would	be	far	less	time	consuming	and	would	automatically	generate	a	schedule	with	the	desired	
classes	that	the	user	can	then	use	for	their	scheduled	courses	for	the	semester.	We	believe	that	this	
design	does	a	decent	job	satisfying	the	user’s	needs	but	could	be	improved.	

4.7.2	Design	1	(Design	Iteration)	

Include	another	most	matured	design	iteration	details.	Describe	what	led	to	this	iteration	and	what	
are	the	major	changes	that	were	needed	in	Design	0.	

New	Class	Setup:	

	

	

Figure 5: Add new class popup

Fitness	of	the	new	course:	

	

Figure 6: How many students can take each course

	

Clicking	on	a	timeslot	shows	the	potential	conflicts.	

	

	

Figure 7: Conflict screen

	

	

4.7 DESIGN	VISUAL	AND	DESCRIPTION	

Include	a	visual	depiction	of	this	design	as	well	highlighting	changes	from	Design	0.	Describe	these	
changes	in	detail.	Justify	them	with	respect	to	requirements.		

Some	changes	we	made	from	Design	0	is	that	we	removed	the	weekend	slots	since	classes	will	not	
be	scheduled	on	the	weekend.	We	also	changed	the	time	that	classes	can	be	scheduled	at	since	
classes	start	as	early	as	7:45	am,	and	end	as	late	as	6:20	pm.	Another	thing	that	we	added	was	a	way	
to	test	multiple	classes	at	once	with	the	addition	of	the	‘+’	button.		We	created	an	input	box	that	is	
used	to	create	a	new	course	that	will	be	evaluated	in	the	schedule.	Then	the	output	will	provide	the	
fitness	of	each	time	slot	for	a	new	course.	Finally,	clicking	on	a	time	slot	will	tell	you	the	class	
sections	that	would	be	a	conflict.			

NOTE:	The	following	sections	will	be	included	in	your	final	design	document	but	do	not	need	to	be	
completed	for	the	current	assignment.	They	are	included	for	your	reference.	If	you	have	ideas	for	these	
sections,	they	can	also	be	discussed	with	your	TA	and/or	faculty	adviser.	

4.8 TECHNOLOGY	CONSIDERATIONS	

Highlight	the	strengths,	weakness,	and	trade-offs	made	in	technology	available.	

Discuss	possible	solutions	and	design	alternatives	

4.9 DESIGN	ANALYSIS		

–		Did	your	proposed	design	from	4.7	work?	Why	or	why	not?		

–		What	are	your	observations,	thoughts,	and	ideas	to	modify	or	iterate	further	over	the	design?		

	

4.10 APPENDIX	A	–	TIME	SLOTS	

	

4.11 APPENDIX	B	–	INPUT	FORMAT	

Two	csv	files	are	used	for	each	major	(Electrical,	Computer,	Cyber).	

The	first	includes	the	class	list	with	the	columns	Course	ID,	Section	ID,	Weekdays,	Meeting	Times,	
student	capacity,	and	Associated	Sections.	This	file	can	be	shared	among	the	three	majors.	If	a	
connection	to	classes.iastate.edu	is	unable	to	be	made,	then	ECpE	staff	will	have	to	enter	this	
information	manually.	Our	team	will	start	with	manual	entry	to	begin	with.	The	ISU	transition	to	
WorkDay	may	standardize	this	process	so	there	will	be	more	clarification	once	a	response	from	the	
WorkCyte	team	is	received.	If	courses	are	scheduled	like	COM	S	311,	then	the	lecture	and	recitation	
are	separate.	In	this	case,	we	need	to	link	each	lecture	section	with	the	potential	recitation/lab	
sections.	Courses	could	also	be	like	CHEM	167	where	the	recitation	and	lecture	are	combined	into	
one	section.	According	to	the	client,	the	courses	will	all	be	like	COM	S	311	with	the	WorkDay	
transition,	but	confirmation	is	being	obtained.		

	

The	second	file	is	the	list	of	classes	for	each	of	the	three	majors	that	are	on	the	“traditional”	
flowchart.	Each	column	has	the	classes	listed	that	are	traditionally	taken	for	each	of	the	8	
semesters.	General	education	and	technical	electives	are	excluded	from	this	list	since	students	take	
very	different	courses	for	these	and	if	a	new	course	wants	to	avoid	the	time	of	another	technical	
elective,	the	course	should	be	entered	into	the	program	as	an	individual	conflict.		

	

	

Additional	inputs	on	the	GUI	would	be:	

1. How	long	is	the	new	course	(60	min	or	75	min)?	
2. What	is	the	capacity	of	the	new	course?	
3. Target	major	(ECpE,	EE,	Cyber	E)	and	year(s),	any	individual	classes	to	avoid	

scheduling	around	

4.12 	APPENDIX	C	–	OUTPUT	FORMAT	

The	output	of	this	program	will	show	a	list	of	recommended	time	slots,	each	with	their	fitness	score	
and	a	breakdown	of	the	conflicts	that	it	has.	

The	fitness	score	will	be	based	around	the	schedule	availability	of	target	major	and	grade	level	(ex.	
CPRE	Junior	1st	Semester)	and	any	other	individual	conflicts	that	exist.		

Pseudo	Code:	

class	potentialTimeSlot	{	

				course:{	

								name,	

								department,	

								coursename	

				},	

			Timeslot,	

			Fitness	score,	

			reasonList<reasons>{	

				 “Conflicts	with	25%	of	class	x	which	that	CPRE	juniors	will	take”	

			}	

}	

	

	

4.13 	APPENDIX	D	–	DATABASE	DESIGN	DIAGRAM	

	

	

5 Testing	

5.1			UNIT	TESTING	

Unit	testing	will	be	used	to	test	critical	functions	within	our	code.	For	functions	that	could	easily	be	
messed	up,	a	unit	test	will	be	put	into	place	to	ensure	that	other	code	is	not	unintentionally	
broken.	While	we	don’t	know	every	specific	function	that	will	be	in	place,	we	have	identified	some	
known	functions	this	will	be	good	for:	

- The	scheduling	algorithm	functions	–	ensure	parts	of	the	scheduling	algorithm	produces	
the	desired	input	and	output.	

- Test	the	input	of	core	classes	for	different	majors	to	ensure	that	the	course	title,	time	
requirement,	and	available	spots	are	correctly	stored	in	the	database	(Req	2.2.1.1)	

- Verify	that	the	application	handles	different	time	formats	correctly	(Req	2.2.1.1)	
- Test	the	creation	of	a	new	course	to	ensure	that	it	is	correctly	added	to	the	database	(Req	

2.2.1.2)	
- Verify	a	rule	is	correctly	enforced	during	scheduling	(Req.	2.2.1.6)	
- Test	the	handling	of	cross	listed	courses	to	ensure	they	are	not	treated	separately	(Req.	

2.2.1.8)	

For	a	tool,	we	will	likely	use	Jest	as	it	is	the	most	popular	unit	testing	platform	for	JavaScript	
programs.	Hopefully	our	team	can	enable	it	to	run	on	a	CI/CD	pipeline.			

5.2		INTERFACE	TESTING	

Our	program	is	not	a	client	and	server	communication-based	application,	so	there	is	not	a	need	to	
ensure	that	the	API	is	matching	a	standard	protocol.	The	only	API	we	could	check	would	be	
ensuring	that	classes.iastate.edu	is	accessible	and	matches	the	previously	utilized	data	standard.		

5.3		INTEGRATION	TESTING	

A	potential	integration	test	for	our	project	would	be	ensuring	that	a	standardized	CSV	format	is	
read	properly	and	saved	to	the	database.	This	would	ensure	that	the	data	is	not	harmed	in	the	
process	and	verify	it	can	be	accurately	retrieved.	Another	integration	test	could	be	the	integration	
between	the	user	interface	and	the	core	application	logic.	Verify	that	user	actions	in	the	UI	(e.g.,	
creating	a	new	course,	setting	rules)	correctly	trigger	the	corresponding	functions	in	the	backend.	

We	plan	to	use	Selenium	and	Jest	in	order	to	test	that	the	changes	are	accurately	reflected.	

What	are	the	critical	integration	paths	in	your	design?	Justification	for	criticality	may	come	from	
your	requirements.	How	will	they	be	tested?	Tools?’	

5.4		SYSTEM	TESTING	

Describe	system	level	testing	strategy.	What	set	of	unit	tests,	interface	tests,	and	integration	tests	
suffice	for	system	level	testing?	This	should	be	closely	tied	to	the	requirements.	Tools?	

We	plan	on	creating	groups	of	multiple	unit	tests	and	then	running	them	together	to	create	a	test	
to	ensure	full	system	functionality.	There	then	can	be	integration	tests	that	create	sample	user	
inputs	and	then	test	the	output	of	the	program	to	ensure	that	the	desired	output	is	produced.		

The	CI/CD	pipeline	on	Gitlab	will	be	used	to	ensure	that	the	code	is	working	as	intended.	Upon	
pushing	code	to	github,	all	code	will	be	tested	to	verify	that	if	it	passes	the	implemented	tests.	This	

https://www.electronjs.org/docs/latest/tutorial/automated-testing

	

way	we	can	confirm	that	code	modifications	doesn’t	negatively	impact	the	results.	The	individual	
unit	tests	align	to	specific	requirements	so	a	group	of	smaller	units	or	integration	tests	will	work	to	
ensure	requirements	are	being	met.		

5.5		REGRESSION	TESTING	

How	are	you	ensuring	that	any	new	additions	do	not	break	the	old	functionality?	What	
implemented	critical	features	do	you	need	to	ensure	do	not	break?	Is	it	driven	by	requirements?	
Tools?	

The	unit	tests	will	be	run	when	code	is	being	built	to	determine	if	changes	have	broken	something	
else	(related	or	unrelated).	The	requirements	are	being	used	to	develop	the	tests,	so	a	failure	of	a	
test	will	mean	a	violation	of	a	requirement.	We	will	use	internal	code	interfaces	to	provide	some	
separation	of	concerns	which	will	help	later	in	our	development	when	we	wish	to	add	or	change	
code	but	do	not	want	to	break	our	existing	functionality.	This	also	means	that	our	job	of	mocking	
and	testing	will	be	easier	later	and	our	individual	components	will	not	affect	each	other.	

5.6	ACCEPTANCE	TESTING	
We	plan	to	show	the	client	working	demonstrations	in	the	development	process.	Even	though	
specific	parts	of	the	code	will	not	be	functioning,	we	can	determine	if	the	specific	parts	of	the	
project	under	test	are	aligning	to	what	the	client	desires.	Since	our	project	is	just	used	by	a	specific	
client,	we	can	ensure	it	is	exactly	what	they	want.	

5.7	SECURITY	TESTING	
Security	testing	will	not	be	applicable	for	this	project	since	we	are	not	storing	any	private	
information.	Because	everything	we	will	be	working	on	for	the	class	scheduler	is	already	available	
to	the	public,	we	won’t	need	to	worry	about	any	type	of	security	testing.	

5.8 RESULTS	

The	expected	results	of	testing	would	be	that	the	app	passes	all	of	the	tests	that	we	write.	There	are	
no	results	at	this	point	in	time	as	development	has	not	yet	started	for	the	app.	

	

6 Implementation	
Describe	any	(preliminary)	implementation	plan	for	the	next	semester	for	your	proposed	design	in	
3.3.	If	your	project	has	inseparable	activities	between	design	and	implementation,	you	can	list	them	
either	in	the	Design	section	or	this	section.	

7 Professionalism	
This	discussion	is	with	respect	to	the	paper	titled	“Contextualizing	Professionalism	in	Capstone	
Projects	Using	the	IDEALS	Professional	Responsibility	Assessment”,	International	Journal	of	
Engineering	Education	Vol.	28,	No.	2,	pp.	416–424,	2012	

	

7.1 AREAS	OF	RESPONSIBILITY	

Pick	one	of		IEEE,	ACM,	or	SE	code	of	ethics.	Add	a	column	to	Table	1	from	the	paper	
corresponding	to	the	society-specific	code	of	ethics	selected	above.	State	how	it	addresses	each	of	
the	areas	of	seven	professional	responsibilities	in	the	table.	Briefly	describe	each	entry	added	to	the	
table	in	your	own	words.	How	does	the	IEEE,	ACM,	or	SE	code	of	ethics	differ	from	the	NSPE	
version	for	each	area?		

If	we	take	the	Software	Engineering	code	of	ethics	and	compare	it	to	Table	1	from	the	paper	
discussed	above,	then	we	can	see	that	many	of	the	principles	seen	in	the	SE	code	of	ethics	are	able	
to	relate	to	the	items	seen	in	the	table.	For	example	the	first	item	in	the	table	is	Work	Competence	
which	is	defined	as	“Perform	work	of	high	quality,	integrity,	timeliness,	and	professional	
competence.”,	this	can	be	closely	compared	to	Principle	1:	Product	from	the	SE	code	of	ethics,	
which	summarily	states	that	software	engineers	must	assure	that	the	product	they	work	on	is	both	
useful	and	acceptable	to	the	public,	client,	and/or	user	and	should	be	completed	on	time	and	with	
little	to	no	error.	

7.2 PROJECT	SPECIFIC	PROFESSIONAL	RESPONSIBILITY	AREAS	

For	each	of	the	professional	responsibility	area	in	Table	1,	discuss	whether	it	applies	in	your	
project’s	professional	context.	Why	yes	or	why	not?		How	well	is	your	team	performing	(High,	
Medium,	Low,	N/A)	in	each	of	the	seven	areas	of	professional	responsibility,	again	in	the	context	of	
your	project.	Justify.	

The	first	item	of	the	table	Work	Competence	does	apply	to	our	profession	context,	especially	
because	we	are	the	second	group	to	have	touched	this	project,	but	our	predecessors	were	not	able	
to	deliver	a	completed	product,	thus	adding	more	pressure	on	us	to	deliver	a	quality	software	
product	to	our	client.	Our	team	is	performing	quite	well	in	being	able	to	deliver	quality	work,	so	far	
only	in	reports,	on	a	timely	basis	and	it’s	expected	to	continue	going	forward	in	the	second	
semester.		

7.3 MOST	APPLICABLE	PROFESSIONAL	RESPONSIBILITY	AREA	

The	most	applicable	professional	responsibility	area	for	our	team	would	be	the	SE	code	of	ethics	
since	our	project	is	exclusively	a	software	project.		

7.4.1	Team	Contract	

Team	Members:	

1)	Brian	Schomer	2)	Lewis	Callaway	

3)	Simeon	Steward	4)	Isaiah	Ortiola	

5)	Michael	Less	6)	Carter	Everts	

Team	Procedures	

Day,	time,	and	location	(face-to-face	or	virtual)	for	regular	team	meetings:	

2.	Preferred	method	of	communication	updates,	reminders,	issues,	and	scheduling	(e.g.,	e-	

	

mail,	phone,	app,	face-to-face):	

3.	Decision-making	policy	(e.g.,	consensus,	majority	vote):	

4.	Procedures	for	record	keeping	(i.e.,	who	will	keep	meeting	minutes,	how	will	minutes	be		

shared/archived):	

Participation	Expectations	

1.	Expected	individual	attendance,	punctuality,	and	participation	at	all	team	meetings:	

2.	Expected	level	of	responsibility	for	fulfilling	team	assignments,	timelines,	and	deadlines:	

3.	Expected	level	of	communication	with	other	team	members:	

4.	Expected	level	of	commitment	to	team	decisions	and	tasks:	

Leadership	

1.	Leadership	roles	for	each	team	member	(e.g.,	team	organization,	client	interaction,		

individual	component	design,	testing,	etc.):	

2.	Strategies	for	supporting	and	guiding	the	work	of	all	team	members:	

3.	Strategies	for	recognizing	the	contributions	of	all	team	members:	

Collaboration	and	Inclusion	

1.	Describe	the	skills,	expertise,	and	unique	perspectives	each	team	member	brings	to	the		

team.	

2.	Strategies	for	encouraging	and	support	contributions	and	ideas	from	all	team	members:	

3.	Procedures	for	identifying	and	resolving	collaboration	or	inclusion	issues	(e.g.,	how	will		

a	team	member	inform	the	team	that	the	team	environment	is	obstructing	their		

opportunity	or	ability	to	contribute?)	

Goal-Setting,	Planning,	and	Execution	

1.	Team	goals	for	this	semester:	

2.	Strategies	for	planning	and	assigning	individual	and	team	work:	

3.	Strategies	for	keeping	on	task:	

Consequences	for	Not	Adhering	to	Team	Contract	

1.	How	will	you	handle	infractions	of	any	of	the	obligations	of	this	team	contract?	

	

2.	What	will	your	team	do	if	the	infractions	continue?	

a)	I	participated	in	formulating	the	standards,	roles,	and	procedures	as	stated	in	this	contract.	

b)	I	understand	that	I	am	obligated	to	abide	by	these	terms	and	conditions.	

c)	I	understand	that	if	I	do	not	abide	by	these	terms	and	conditions,	I	will	suffer	the	

consequences	as	stated	in	this	contract.	

1)	Brian	Schomer	DATE	12-3-23	

2)	Lewis	Callaway		DATE	12-3-23	

3)	Simeon	Steward		DATE	12-3-23	

4)	Isaiah	Ortiola		DATE	12-3-23	

5)	Michael	Less	DATE	12-3-23	

6)	Carter	Everts	DATE	12-3-23	

	

	

	

